Generalized algebraic framework for open spin chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 275645
(http://iopscience.iop.org/0305-4470/27/16/028)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at $21: 38$

Please note that terms and conditions apply.

Generalized algebraic framework for open spin chains

Ladislav Hlavatý \dagger
Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Bfehova 7, 11519 Prague 1, Czech Republic

Received 16 May 1994

Abstract

An extension of the Sklyanin algebraic framework for construction of a commuting set of operators is presented. The conditions under which the operators can be interpreted as integrals of motion of an open spin chain with boundary conditions and nearest-neighbour interaction are investigated. An example based on the asymmetric six-vertex solutions of the ybe equation is given.

1. Introduction

At the end of the seventies the quantum inverse scattering method was developed (for a review see, for example, [1]). One of the systems where it was applied was periodic spin chain with nearest-neighbour interaction. The algebra, from which the Hamiltonian of this system as well as its integrals of motion were derived, is defined by the relations

$$
\begin{equation*}
R_{12}\left(u_{1}-u_{2}\right) L_{1}\left(u_{1}\right) L_{2}\left(u_{2}\right)=L_{2}\left(u_{2}\right) L_{1}\left(u_{1}\right) R_{12}\left(u_{1}-u_{2}\right) \tag{1}
\end{equation*}
$$

where R is a matrix function $R: U \rightarrow E n d\left(V_{0} \otimes V_{0}\right)$ satisfying the Yang-Baxter equation (YBE)

$$
\begin{equation*}
R_{23}\left(u_{2}-u_{3}\right) R_{13}\left(u_{1}-u_{3}\right) R_{12}\left(u_{1}-u_{2}\right)=R_{12}\left(u_{1}-u_{2}\right) R_{13}\left(u_{1}-u_{3}\right) R_{23}\left(u_{2}-u_{3}\right) . \tag{2}
\end{equation*}
$$

The range U of the 'spectral parameters' u is usually the field of complex or real numbers.
In 1988, Sklyanin proposed a method for constructing solvable models of quantum open (i.e. non-periodic) spin chains [2]. The method is based on reflection-type algebras given by the relations

$$
\begin{aligned}
& R_{12}\left(u_{1}-u_{2}\right) M_{1}\left(u_{1}\right) R_{12}\left(u_{1}+u_{2}\right) M_{2}\left(u_{2}\right)=M_{2}\left(u_{2}\right) R_{12}\left(u_{1}+u_{2}\right) M_{1}\left(u_{1}\right) R_{12}\left(u_{1}-u_{2}\right) \\
& R_{12}\left(u_{2}-u_{1}\right) K_{1}^{t_{1}}\left(u_{1}\right) R_{12}\left(-u_{1}-u_{2}-2 \eta\right) K_{2}^{t_{2}}\left(u_{2}\right) \\
& \quad=K_{2}^{t_{2}}\left(u_{2}\right) R_{12}\left(-u_{1}-u_{2}-2 \eta\right) K_{1}^{t_{1}}\left(u_{1}\right) R_{12}\left(u_{2}-u_{1}\right)
\end{aligned}
$$

In addition to the YBE, the matrix R was required to satisfy the conditions

$$
\begin{aligned}
& P_{12} R_{12}(u) P_{12}=R_{12}(u) \\
& R_{12}^{t_{1}}(u)=R_{12}^{t_{2}}(u) \\
& R_{12}(u) R_{12}(-u)=\rho(u) \mathbf{1}_{12} \\
& R_{12}^{t_{1}}(u) R_{12}^{t_{1}}(-u-2 \eta)=\tilde{\rho}(u) \mathbf{1}_{12}
\end{aligned}
$$

\dagger E-mail address: hlavaty@br.fficicvut.cz
where t_{1}, t_{2} mean the transposition in the first or second pair of indices of $R_{12}(u)=$ $\left\{R_{i_{1} i_{2}}{ }^{j_{1} j_{2}}(u)\right\}_{i_{1}, i_{2}, j_{1}, j_{2}=1}^{d_{i m}} v_{0}$. Under these conditions it was shown that there is a set of mutually commuting elements that can be used for construction of the Hamiltonian for the open spin chain system with the nearest-neighbour interaction and boundary terms. Some of the conditions were later weakened [3] but they still remained rather restrictive. The purpose of this paper is to present a more general construction of open spin chains.

2. The generalized construction

The starting point is the associative algebra generated by elements $M_{i}^{j}(u), K_{i}^{j}(u), i, j \in$ $\left\{1, \ldots, d_{0}=\operatorname{dim} V_{0}\right\}$ satisfying quadratic relations
$A_{12}\left(u_{1}, u_{2}\right) M_{1}\left(u_{1}\right) B_{12}\left(u_{1}, u_{2}\right) M_{2}\left(u_{2}\right)=M_{2}\left(u_{2}\right) C_{12}\left(u_{1}, u_{2}\right) M_{1}\left(u_{1}\right) D_{12}\left(u_{1}, u_{2}\right)$
$\tilde{A}_{12}\left(u_{1}, u_{2}\right) K_{1}^{t_{1}}\left(u_{1}\right) \tilde{B}_{12}\left(u_{1}, u_{2}\right) K_{2}^{t_{2}}\left(u_{2}\right)=K_{2}^{t_{2}}\left(u_{2}\right) \tilde{C}_{12}\left(u_{1}, u_{2}\right) K_{1}^{t_{1}}\left(u_{1}\right) \tilde{D}_{12}\left(u_{1}, u_{2}\right)$
where A, B, \ldots, \tilde{D} are matrix functions $U \times U \rightarrow \operatorname{End}\left(V_{0} \times V_{0}\right)$, i.e. $A_{12}\left(u_{1}, u_{2}\right)=$ $\left\{A_{i_{1} i_{2}}^{j_{1} j_{2}}\left(u_{1}, u_{2}\right)\right\}_{i_{1}, i_{2}, j_{1}, j_{2}=1}^{\text {dim }} V_{0}$ and similarly for B, C, \ldots, \tilde{D}. Algebras of this type were investigated in a different context in [4].

Our first task is to identify the conditions for the numerical matrices A, B, \ldots, \tilde{D} that guarantee the existence of a commuting subalgebra which, when represented, will provide us with a commuting set of operators that eventually can be interpreted as the integrals of motion of a quantum system.

Theorem 1. Let \mathcal{A} is the associative algebra generated by elements $M_{i}^{j}(u), K_{i}^{j}(u)$, relations (3), (4) and

$$
\begin{equation*}
M_{1}\left(u_{1}\right) K_{2}\left(u_{2}\right)=K_{2}\left(u_{2}\right) M\left(u_{1}\right) \tag{5}
\end{equation*}
$$

If the matrices $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}$, are related to A, B, C, D by

$$
\begin{align*}
& \tilde{A}_{12}\left(u_{1}, u_{2}\right)=\tilde{a}\left(u_{1}, u_{2}\right)\left(A_{12}^{t_{1} t_{2}}\left(u_{1}, u_{2}\right)\right)^{-1} \tag{6}\\
& \tilde{B}_{12}\left(u_{1}, u_{2}\right)=\tilde{b}\left(u_{1}, u_{2}\right)\left(\left(B_{12}^{t_{1}}\left(u_{1}, u_{2}\right)\right)^{-1}\right)^{t_{2}} \tag{7}\\
& \tilde{C}_{12}\left(u_{1}, u_{2}\right)=\tilde{c}\left(u_{1}, u_{2}\right)\left(\left(C_{12}^{t_{2}}\left(u_{1}, u_{2}\right)\right)^{-1}\right)^{t_{1}} \tag{8}\\
& \bar{D}_{12}\left(u_{1}, u_{2}\right)=\tilde{d}\left(u_{1}, u_{2}\right)\left(D_{12}^{t_{1} t_{2}}\left(u_{1}, u_{2}\right)\right)^{-1} \tag{9}
\end{align*}
$$

where $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$ are scalar functions satisfying

$$
\begin{equation*}
\tilde{a}\left(u_{1}, u_{2}\right) \tilde{b}\left(u_{1}, u_{2}\right)=\tilde{c}\left(u_{1}, u_{2}\right) \tilde{d}\left(u_{1}, u_{2}\right) \tag{10}
\end{equation*}
$$

then the elements $t(u)=K_{i}^{j}(u) M_{j}^{i}(u)=\operatorname{tr}[K(u) M(u)]$ form a commutative subalgebra of \mathcal{A}

$$
\left[t\left(u_{1}\right), t\left(u_{2}\right)\right]=0
$$

Remark. Note that there are no restrictions on A, B, C, D.
Proof. This repeats the steps of [2]. Denoting $K_{1} \equiv K_{1}\left(u_{1}\right), K_{2} \equiv K_{2}\left(u_{2}\right), M_{1} \equiv M_{1}\left(u_{1}\right)$, $M_{2} \equiv M_{2}\left(u_{2}\right), A_{12} \equiv A_{12}\left(u_{1}, u_{2}\right), \ldots, D_{12} \equiv D_{12}\left(u_{1}, u_{2}\right)$ and using the properties of the trace

$$
\operatorname{tr} X^{t} Y^{t}=\operatorname{tr} X Y \quad \operatorname{tr}\left(X Y^{t}\right)=\operatorname{tr}\left(X^{t} Y\right)
$$

and relations (3)-(8) we get

$$
\begin{aligned}
t\left(u_{1}\right) t\left(u_{2}\right)= & \operatorname{tr}_{1}\left(K_{1} M_{1}\right) \operatorname{tr}_{2}\left(K_{2} M_{2}\right)=\cdots=\operatorname{tr}_{12}\left(K_{1}^{t_{1}} K_{2} M_{1}^{t_{1}} M_{2}\right) \\
& =\operatorname{tr}_{12}\left(K_{1}^{t_{1}} K_{2} \tilde{B}_{12}^{t_{2}} B_{12}^{t_{1}} M_{1}^{t_{1}} M_{2}\right) / \tilde{b}=\operatorname{tr}_{12}\left[\left(K_{1}^{t_{1}} \tilde{B}_{12} K_{2}^{t_{2}}\right)^{t_{2}}\left(M_{1} B_{12} M_{2}\right)^{t_{1}}\right] / \tilde{b} \\
& =\operatorname{tr}_{12}\left[\left(K_{1}^{t_{1}} \tilde{B}_{12} K_{2}^{t_{2}}\right)^{t_{1} t_{2}} \tilde{A}_{12}^{t_{1} t_{2}} A_{12}\left(M_{1} B_{12} M_{2}\right)\right] /(\tilde{a} \tilde{b}) \\
& =\operatorname{tr}_{12}\left[\left(\tilde{A}_{12} K_{1}^{t_{1}} \tilde{B}_{12} K_{2}^{t_{2}}\right)^{t_{1} t_{2}}\left(A_{12} M_{1} B_{12} M_{2}\right)\right] /(\tilde{a} \tilde{b}) \\
& =\operatorname{tr}_{12}\left[\left(K_{2}^{t_{2}} \tilde{C}_{12} K_{1}^{t_{1}} \tilde{D}_{12}\right)\left(M_{2} C_{12} M_{1} D_{12}\right)^{t_{1} t_{2}}\right] /(\tilde{c} \tilde{d}) \\
& =\operatorname{tr}_{12}\left[\left(K_{2}^{t_{2}} \tilde{C}_{12} K_{1}^{t_{1}}\right)^{t_{1}}\left(M_{2} C_{12} M_{1}\right)^{t_{2}}\right] / \tilde{c} \\
& =\operatorname{tr}_{12}\left[K_{2}^{t_{2}} K_{1} M_{2}^{t_{2}} M_{1}\right] \\
& =\operatorname{tr}_{12}\left[K_{2}^{t_{2}} M_{2}^{t_{2}} K_{1} M_{1}\right]=t\left(u_{2}\right) t\left(u_{1}\right)
\end{aligned}
$$

The fundamental property that enabled us to construct the operators describing integrals of motion of periodic spin chains was the possibility of defining a coproduct in the algebra (1). The commuting operators could then be expressed in the form

$$
\hat{t}(u)=\operatorname{tr}\left[L_{(N)}(u) L_{(N-1)}(u) \cdots L_{(1)}(u)\right]
$$

where $L_{(j)}$ were matrices of operators acting non-trivially only in the space of the j th spin. Even though it is not possible (in the unbraided categories) to define a coproduct in the algebra \mathcal{A}, we can use the algebra for the construction of spin chain operators due to the following covariance property.
Theorem 2. Let \mathcal{B} be the algebra generated by $L(u)=L_{i}^{j}(u), N(u)=N_{i}^{j}(u), i, j \in$ $\left\{1, \ldots, d_{0}=\operatorname{dim} V_{0}\right\}$ and the relations

$$
\begin{align*}
& A_{12}\left(u_{1}, u_{2}\right) L_{1}\left(u_{1}\right) L_{2}\left(u_{2}\right)=L_{2}\left(u_{2}\right) L_{1}\left(u_{1}\right) A_{12}\left(u_{1}, u_{2}\right) \tag{11}\\
& D_{12}\left(u_{1}, u_{2}\right) N_{1}\left(u_{1}\right) N_{2}\left(u_{2}\right)=N_{2}\left(u_{2}\right) N_{1}\left(u_{1}\right) D_{12}\left(u_{1}, u_{2}\right) \tag{12}\\
& N_{1}\left(u_{1}\right) B_{12}\left(u_{1}, u_{2}\right) L_{2}\left(u_{2}\right)=L_{2}\left(u_{2}\right) B_{12}\left(u_{1}, u_{2}\right) N_{1}\left(u_{1}\right) \tag{13}\\
& L_{1}\left(u_{1}\right) C_{12}\left(u_{1}, u_{2}\right) N_{2}\left(u_{2}\right)=N_{2}\left(u_{2}\right) C_{12}\left(u_{1}, u_{2}\right) L_{1}\left(u_{1}\right) \tag{14}
\end{align*}
$$

Then:
(i) the algebra \mathcal{B} can be turned into bialgebra by the coproduct

$$
\begin{equation*}
\Delta\left(L_{i}^{j}(u)\right)=L_{i}^{k}(u) \otimes L_{k}^{j}(u) \quad \Delta\left(N_{i}^{j}(u)\right)=N_{k}^{j}(u) \otimes N_{i}^{k}(u) \tag{15}
\end{equation*}
$$

and counit

$$
\begin{equation*}
\epsilon\left(L_{i}^{j}(u)\right)=\delta_{i}^{j} \quad \epsilon\left(N_{i}^{j}(u)\right)=\delta_{i}^{j} \tag{16}
\end{equation*}
$$

(ii) The algebra \mathcal{M} generated by the $M_{i}^{j}(u)$ and relations (3) is the \mathcal{B}-comodule algebra. The coaction on \mathcal{M} is given by

$$
\begin{equation*}
\beta: \mathcal{M} \rightarrow \mathcal{M} \otimes \mathcal{B} \quad \beta\left(M_{i}^{j}(u)\right)=M_{k}^{l}(u) \otimes L_{i}^{k}(u) N_{l}^{j}(u) \tag{17}
\end{equation*}
$$

which, with a slight abuse of notation, can be written as $\beta(M)=\tilde{M}=L M N$.
Remark. A similar covariance algebra can be defined for the algebra \mathcal{K} generated by $K_{i}^{j}(u)$.

Proof. The check of invariance of the relations (11)-(14) under (15),(16) is straightforward. The invariance of (3) under (17) is proved by

$$
\begin{aligned}
A_{12} \tilde{M}_{1} B_{12} \tilde{M}_{2} & =A_{12} L_{1} M_{1}\left(N_{1} B_{12} L_{2}\right) M_{2} N_{2}=\left(A_{12} L_{1} L_{2}\right) M_{1} B_{12} N_{1} M_{2} N_{2} \\
& =L_{2} L_{1}\left(A_{12} M_{1} B_{12} M_{2}\right) N_{1} N_{2}=L_{2} L_{1} M_{2} C_{12} M_{1}\left(D_{12} N_{1} N_{2}\right) \\
& =L_{2} M_{2}\left(L_{1} C_{12} N_{2}\right) M_{1} N_{1} D_{12}=\left(L_{2} M_{2} N_{2}\right) C_{12}\left(L_{1} M_{1} N_{1}\right) D_{12} \\
& =\tilde{M}_{2} C_{12} \tilde{M}_{1} D_{12}
\end{aligned}
$$

(As in the proof of theorem 1, we have omitted the explicit (u_{1}, u_{2}) dependence in the above formulae.)

The importance of theorem 2 lies in the fact that it presents the possibility of defining a set of commuting operators composed from the operators acting non-trivially only in the spaces V_{i} of single spin states. Indeed, if ρ_{i} are the representation of \mathcal{B} on the spaces V_{i}, $i=1, \ldots, N$, then

$$
\begin{aligned}
& \hat{L}(u):=\left(\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{N}\right) \circ\left(\Delta^{N-1}\right)(L(u)) \\
& \hat{N}(u):=\left(\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{N}\right) \circ\left(\Delta^{N-1}\right)(N(u))
\end{aligned}
$$

are operators that represent the algebra \mathcal{B} on $\mathcal{H} \equiv V_{1} \otimes V_{2} \otimes \cdots \otimes V_{N}$ that is the Hilbert space of the system of N spins. The operators $\hat{L}(u), \hat{N}(u)$ can be written as

$$
\begin{align*}
& \hat{L}(u)=\hat{L}_{(N)}(u) \hat{L}_{(N-1)}(u) \cdots \hat{L}_{(1)}(u) \tag{18}\\
& \hat{N}(u)=\hat{N}_{(1)}(u) \hat{N}_{(2)}(u) \cdots \hat{N}_{(N)}(u) \tag{19}
\end{align*}
$$

where

$$
\begin{aligned}
& \hat{L}_{(j)}(u)=\mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \rho_{j}(L(u)) \otimes \mathbb{1} \otimes \cdots \otimes \mathbf{1} \\
& \hat{N}_{(j)}(u)=\mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \rho_{j}(N(u)) \otimes \mathbf{1} \otimes \cdots \otimes \mathbb{1} .
\end{aligned}
$$

The representations of \mathcal{B} on V_{i} such that $\operatorname{dim} V_{i}=\operatorname{dim} V_{0}, i=1,2, \ldots, N$ follow from theorem 3.

Theorem 3. Let there be $\alpha, \delta \in U$ such that the matrices A, B, C, D satisfy the equations

$$
\begin{align*}
& A_{12}\left(u_{1}, u_{2}\right) A_{13}\left(u_{1}, \alpha\right) A_{23}\left(u_{2}, \alpha\right)=A_{23}\left(u_{2}, \alpha\right) A_{13}\left(u_{1}, \alpha\right) A_{12}\left(u_{1}, u_{2}\right) \tag{20}\\
& D_{12}\left(u_{1}, u_{2}\right) D_{13}\left(u_{1}, \delta\right) D_{23}\left(u_{2}, \delta\right)=D_{23}\left(u_{2}, \delta\right) D_{13}\left(u_{1}, \delta\right) D_{12}\left(u_{1}, u_{2}\right) \tag{21}\\
& D_{13}\left(u_{1}, \delta\right) B_{12}\left(u_{1}, u_{2}\right) A_{23}\left(u_{2}, \alpha\right)=A_{23}\left(u_{2}, \alpha\right) B_{12}\left(u_{1}, u_{2}\right) D_{13}\left(u_{1}, \delta\right) \tag{22}\\
& A_{13}\left(u_{1}, \alpha\right) C_{12}\left(u_{1}, u_{2}\right) D_{23}\left(u_{2}, \delta\right)=D_{23}\left(u_{2}, \delta\right) C_{12}\left(u_{1}, u_{2}\right) A_{13}\left(u_{1}, \alpha\right) \tag{23}
\end{align*}
$$

for all $u_{1}, u_{2} \in U$. (Note the unusual order of indices in (22), (23).)
Then the multiplicative map $\rho_{\alpha \delta}: \mathcal{B} \rightarrow \operatorname{End}\left(V_{0}\right)$

$$
\begin{align*}
{\left[\rho_{\alpha \delta}\left(L_{k}^{j}(u)\right)\right]_{m}^{n} } & =A_{k m}^{j n}(u, \alpha) \tag{24}\\
{\left[\rho_{\alpha \delta}\left(N_{k}^{j}(u)\right)\right]_{m}^{n} } & =D_{k m}^{j n}(u, \delta) \tag{25}
\end{align*}
$$

is a representation of the algebra \mathcal{B} on a space V such that $\operatorname{dim} V=\operatorname{dim} V_{0}$.

Proof. This is by direct check of relations (11)-(14) by means of (20)-(23).
Remark. Note that full Yang-Baxter-type equations are not required in the theorem. It is sufficient if they are satisfied for single $(\alpha, \delta) \in U \times U$.

If we find a representation σ of \mathcal{A} on \mathcal{H}, then due to theorems 1 and 2 we get the set of commuting operators on \mathcal{H}

$$
\hat{t}(u):=\operatorname{Tr}[\sigma(K(u)) \hat{L}(u) \sigma(M(u)) \hat{N}(u)]
$$

from which the Hamiltonians can be extracted. The simplest possibility is given by onedimensional representation of \mathcal{A}. Assuming that there are numerical matrices $m(u), k(u) \in$ $\operatorname{End}\left(V_{0}\right)$ that satisfy relations (3), (4), we can choose

$$
\sigma\left(M_{i}^{j}(u)\right)=m_{i}^{j}(u) \mathbb{1}_{\mathcal{H}} \quad \sigma\left(K_{i}^{j}(u)\right)=k_{i}^{j}(u) \mathbb{1}_{\mathcal{H}} .
$$

Then

$$
\begin{equation*}
\hat{t}(u)=\operatorname{tr}\left[k(u) \hat{L}_{(N)}(u) \ldots \hat{L}_{(1)}(u) m(u) \hat{N}_{(1)}(u) \ldots \hat{N}_{(N)}(u)\right] \tag{26}
\end{equation*}
$$

where the operator matrices $L_{(k)}$ and $N_{(k)}$ act non-trivially only in the k th factor of the space $\mathcal{H}=V_{0} \otimes V_{0} \otimes \cdots \otimes V_{0}$.

The last goal we want to achieve is finding the Hamiltonian H of the open chain system with nearest-neighbour interaction and boundary terms. For that we need the so-called regularity conditions.

Theorem 4. Let there be a one-dimensional representation of the algebra \mathcal{A} by the numerical matrices $m(u), k(u)$ and the representation of \mathcal{B} on V_{i} be $\rho_{i}=\rho_{\alpha, \delta}$ for all $i \in\{1, \ldots, N\}$.

If there is $u_{0} \in U$ such that
$A_{12}\left(u_{0}, \alpha\right)=\kappa P_{12} \quad D_{12}\left(u_{0}, \delta\right)=\lambda P_{12} \quad m\left(u_{0}\right)=\mu \mathbb{t r}\left[k\left(u_{0}\right)\right] \neq 0$
where κ, λ, μ are constants and P is the permutation matrix, then

$$
\begin{equation*}
\hat{t}\left(u_{0}\right)=\mu(\kappa \lambda)^{N} \operatorname{tr}\left[k\left(u_{0}\right)\right] \mathbf{1}_{\mathcal{H}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} \hat{t}}{\mathrm{~d} u}\left(u_{0}\right)=(\kappa \lambda)^{N} \mu\left[H \operatorname{tr}\left[k\left(u_{0}\right)\right]+\operatorname{tr}\left(\frac{\mathrm{d} k}{\mathrm{~d} u}\left(u_{0}\right)\right) \mathbb{1}_{\mathcal{H}}\right] \tag{29}
\end{equation*}
$$

where the Hamiltonian H is a sum of operators acting non-trivially only on $V_{1}, V_{j} \otimes V_{j+1}$, $j=1, \ldots, N-1$ and V_{N}.

$$
\begin{align*}
& H=\sum_{n=1}^{N-1} H_{n, n+1}+\mu^{-1} \frac{\mathrm{~d} m_{(1)}}{\mathrm{d} u}\left(u_{0}\right)+\left[\operatorname{tr} k\left(u_{0}\right)\right]^{-1} \operatorname{tr} 0\left[k_{0}\left(u_{0}\right) H_{N, 0}\right] \tag{30}\\
& H_{n, n+1}=\lambda^{-1} \frac{\mathrm{~d} D_{n, n+1}}{\mathrm{~d} u}\left(u_{0}, \delta\right) P_{n, n+1}+\kappa^{-1} P_{n, n+1} \frac{\mathrm{~d} A_{n, n+1}}{\mathrm{~d} u}\left(u_{0}, \alpha\right) \tag{31}
\end{align*}
$$

Proof. From (18), (19) and (24)-(27) we get

$$
\begin{equation*}
\hat{L}(u)=\kappa^{N} P_{0 N} P_{0 n-1}, \ldots, P_{01} \quad \hat{N}(u)=\lambda^{N} P_{01} P_{02}, \ldots, P_{0 N} \tag{32}
\end{equation*}
$$

from which (28) follows immediately. Similarly, (29)-(31) are obtained by differentiating (26), using (32) and the following identity on End $\left(V_{0}^{\otimes N+1}\right)$:

$$
P_{0, n+1} X_{0 n}=X_{n+1, n} P_{0, n+1}
$$

We can see that the open spin chains with the nearest-neighbour interaction can be constructed from rather general quadratic algebras defined by matrix functions A, B, C, D of two variables that:
(i) satisfy the equations (20)-(23);
(ii) admit one-dimensional representation of \mathcal{A}, i.e. numerical matrices $m(u), k(u)$ that satisfy (3), (4), where $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}$ are given by (9), (10);
(iii) satisfy the regularity condition (27) for A, D and $m(u), k(u)$.

3. Example: the $X X Z$ model in a magnetic field

The above theory suggests the following procedure for construction of the open spin chain models:
(i) Take two solutions A, D of the YBE (of the same dimension).
(ii) Find the matrices B, C that satisfy (22), (23).
(iii) Solve equations (3), (4) for numerical matrices $m(u), k(u)$.
(iv) Check the regularity conditions.
(v) Evaluate the Hamiltonian (30), (31).

In this section we are going to apply this procedure to spaces with dim $=2$, i.e. spin $-\frac{1}{2}$ chains and asymmetric six-vertex matrices
$A(u, v)=\left(\begin{array}{cccc}A_{1} & 0 & 0 & 0 \\ 0 & A_{2} & A_{5} & 0 \\ 0 & A_{6} & A_{3} & 0 \\ 0 & 0 & 0 & A_{4}\end{array}\right) \quad D(u, v)=\left(\begin{array}{cccc}D_{1} & 0 & 0 & 0 \\ 0 & D_{2} & D_{5} & 0 \\ 0 & D_{6} & D_{3} & 0 \\ 0 & 0 & 0 & D_{4}\end{array}\right)$
where $A_{i}=A_{i}(u, v), D_{i}=D_{i}(u, v), i=1,2, \ldots, 6$.
Inserting equation (33) into (22) we get a system of linear homogeneous equations for the elements of the matrix B. Solving it by the standard method we find that if $A_{1} \neq A_{3}$, $A_{2} \neq A_{4}, D_{1} \neq D_{3}, D_{2} \neq D_{4}$, then there is a non-zero solution of (22) if and only if

$$
\begin{equation*}
\frac{\tilde{A}_{\mathrm{F}}}{\tilde{A}_{1} \tilde{A}_{2}}=\frac{\bar{D}_{\mathrm{F}}}{\bar{D}_{3} \bar{D}_{4}} \quad \frac{\bar{D}_{\mathrm{F}}}{\bar{D}_{1} \bar{D}_{2}}=\frac{\bar{A}_{\mathrm{F}}}{\tilde{A}_{3} \tilde{A}_{4}} \tag{34}
\end{equation*}
$$

where $\tilde{A}_{i}=A_{i}(v, \alpha), \bar{D}_{i}=D_{i}(u, \delta)$ and

$$
\begin{align*}
& \tilde{A}_{\mathrm{F}}=\tilde{A}_{1} \tilde{A}_{4}+\tilde{A}_{2} \tilde{A}_{3}-\tilde{A}_{5} \tilde{A}_{6} \tag{35}\\
& \tilde{D}_{\mathrm{F}}=\tilde{D}_{1} \tilde{D}_{4}+\tilde{D}_{2} \tilde{D}_{3}-\tilde{D}_{5} \tilde{D}_{6} \tag{36}
\end{align*}
$$

The solution is

$$
\begin{align*}
& B=\left(\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
0 & B_{2} & B_{5} & 0 \\
0 & B_{6} & B_{3} & 0 \\
0 & 0 & 0 & B_{4}
\end{array}\right) \tag{37}\\
& B_{1}=\tilde{A}_{1} \check{D}_{1}-\tilde{A}_{3} \bar{D}_{3} \quad B_{4}=\tilde{A}_{4} \bar{D}_{4}-\tilde{A}_{2} \bar{D}_{2} \tag{38}\\
& B_{2}=\tilde{A}_{3} \check{D}_{4}+\left(\tilde{A}_{5} \tilde{A}_{6}-\tilde{A}_{2} \tilde{A}_{3}\right) \bar{D}_{2} / \tilde{A}_{4} \tag{39}\\
& B_{3}=\tilde{A}_{4} \bar{D}_{3}+\left(\bar{D}_{5} \bar{D}_{6}-\bar{D}_{2} \tilde{D}_{3}\right) \tilde{A}_{2} / \bar{D}_{4} \tag{40}\\
& B_{5}=\tilde{A}_{5} \bar{D}_{6} \quad B_{6}=\tilde{A}_{6} \bar{D}_{5} . \tag{41}
\end{align*}
$$

It is unique up to a scalar factor.

Note that the conditions (34) imply that either both the matrices A and D are freefermionic, i.e. $A_{\mathrm{F}}=0, D_{\mathrm{F}}=0$, or non-free-fermionic, i.e. $A_{\mathrm{F}} \neq 0, D_{\mathrm{F}} \neq 0$.

We shall deal with the latter case because for the free-fermionic solutions usually $\operatorname{tr}\left[k\left(u_{0}\right)\right]=0$ [7] and the formula (31) cannot be applied. Let A and D be non-symmetric solutions of the YBE [5]

$$
A(u, v)=\left(\begin{array}{cccc}
\frac{\varphi(u)}{\varphi(v)} \sin (u-v+\eta) & 0 & 0 & 0 \tag{42}\\
0 & \frac{\sin (u-v)}{\varphi(u) \varphi(v)} & \sin (\eta) & 0 \\
0 & \sin (\eta) & \varphi(u) \varphi(v) \sin (u-v) & 0 \\
0 & 0 & 0 & \frac{\varphi(v)}{\varphi(u)} \sin (u-v+\eta)
\end{array}\right)
$$

where φ is an arbitrary function and $D(u, v)$ is obtained from $A(u, v)$ by $\varphi \rightarrow \varphi^{\prime}$.
The condition (34) reads

$$
\begin{equation*}
\varphi^{\prime}(\delta)^{2} \varphi(\alpha)^{2}=1 \tag{43}
\end{equation*}
$$

and inserting A, D into (37)-(41) we get
$B(u, v)=\left(\begin{array}{cccc}\varphi^{\prime}(u) \varphi(v) \sin (\omega+\eta) & 0 & 0 & 0 \\ 0 & \frac{\varphi(v)}{\varphi^{\prime}(u)} \sin (\omega) & p \sin (\eta) & 0 \\ 0 & p \sin (\eta) & \frac{\varphi^{\prime}(u)}{\varphi(v)} \sin (\omega) & 0 \\ 0 & 0 & 0 & \frac{\sin (\omega+\eta)}{\varphi(v) \varphi^{\prime}(u)}\end{array}\right)$
where $\omega=u+v-\alpha-\delta$ and $p=\varphi^{\prime}(\delta) \varphi(\alpha)$.
It is easy to see that the solution of (23) can be derived from that of (22) by transformation $A \leftrightarrow D, \alpha \leftrightarrow \delta$ or alternatively by $u \leftrightarrow v, 2 \leftrightarrow 1$ so that

$$
\begin{equation*}
C(u, v)=P B(v, u) P \tag{45}
\end{equation*}
$$

up to a scalar factor.
The next step is solving the relations (3), (4) in terms of numerical matrices $m(u), k(u)$. If we are looking for the diagonal solution

$$
m(u)=\left(\begin{array}{cc}
x(u) & 0 \\
0 & t(u)
\end{array}\right)
$$

then equation (3) yields (for a suitable normalization of the matrices A, B, C, D) only one equation for $y(u)=x(u) / t(u)$, namely

$$
\begin{align*}
& \left(\frac{x(u) x(v)}{\varphi(u) \varphi^{\prime}(u) \varphi(v) \varphi^{\prime}(v)}-t(u) t(v)\right) \sin (u-v) \\
& \quad=p\left(\frac{x(u) t(v)}{\varphi(u) \varphi^{\prime}(u)}-\frac{x(v) t(u)}{\varphi(v) \varphi^{\prime}(v)}\right) \sin (u+v-\alpha-\delta) . \tag{46}
\end{align*}
$$

It can be transformed to the well known functional equation

$$
\begin{equation*}
(Y(u) Y(v)-1) \sin (u-v)=(Y(u)-Y(v)) \sin (u+v-\alpha-\delta) \tag{47}
\end{equation*}
$$

by the transformation

$$
\begin{equation*}
Y(u-\alpha / 2+\delta / 2)=\frac{p x(u)}{t(u) \varphi(u) \varphi^{\prime}(u)} \tag{48}
\end{equation*}
$$

The diagonal solution of (3) is then
$m(u)=\left(\begin{array}{cc}\varphi(u) \varphi^{\prime}(u) \sin \left(\xi_{-}+u-\alpha / 2-\delta / 2\right) & 0 \\ 0 & p \sin \left(\xi_{-} u+\alpha / 2+\delta / 2\right)\end{array}\right)$.
The equation (4) can be obtained from (3) by $\varphi \rightarrow 1 / \varphi, \varphi^{\prime} \rightarrow 1 / \varphi^{\prime}, M(u) \rightarrow K^{t}(u)$ and changing the arguments of \sin by $u \rightarrow-u-\eta+\alpha+\delta, v \rightarrow-v-\eta+\alpha+\delta$. Applying these transformations we find that
$k(u)=\left(\begin{array}{cc}p \sin \left(\xi_{+}-u+\alpha / 2+\delta / 2-\eta\right) & 0 \\ 0 & \varphi(u) \varphi^{\prime}(u) \sin \left(\xi_{+}+u-\alpha / 2-\delta / 2+\eta\right)\end{array}\right)$
(ξ - and ξ_{+}in (49) and (50) are arbitrary constants).
The regularity conditions (27) are satisfied if

$$
u_{0}=\alpha=\delta
$$

and the nearest-neighbour interaction Hamiltonian derived from (30), (31) is

$$
\begin{aligned}
H=(2 \sin \eta)^{-1} & \sum_{n=1}^{N-1}\left\{\cosh \theta\left(\sigma_{n}^{x} \sigma_{n+1}^{x}+\sigma_{n}^{y} \sigma_{n+1}^{y}\right)+\mathrm{i} \sinh \theta\left(\sigma_{n}^{x} \sigma_{n+1}^{y}-\sigma_{n}^{y} \sigma_{n+1}^{x}\right)\right. \\
& \left.+\cos \eta \sigma_{n}^{z} \sigma_{n+1}^{z}\right\}+h \sum_{n=1}^{N} \sigma_{n}^{z}+\sigma_{1}^{z} \cot \xi_{-}+\sigma_{N}^{z} \cot \xi_{+}
\end{aligned}
$$

where

$$
\exp \theta=\varphi\left(u_{0}\right)^{2}=\varphi^{\prime}\left(u_{0}\right)^{-2} \quad h=\left.\frac{\mathrm{d} \log \varphi(u) \varphi^{\prime}(u)}{\mathrm{d} u}\right|_{u=u_{0}}
$$

This Hamiltonian is an open version of the $X X Z$ model in the homogeneous magnetic field h and is an extension of the models presented in $[2,3,8]$.

The non-diagonal matrices $m(u), k(u)$ can be obtained only when $\varphi^{\prime}(u) \varphi(u)=$ constant. In that case we obtain a Hamiltonian with the boundary terms proportional to σ^{x} and σ^{y}, like in [9], but the external homogeneous magnetic field h vanishes.

4. Conclusions

The algebraic framework for the construction of integrable models can be extended to quadratic algebras whose 'structure coefficients' are given by a pair of solutions A and D of the spectral-dependant YBE.

No symmetries of the solutions are required but a certain compatibility between them must be satisfied in order that the algebras may have convenient covariance properties. In case of six-vertex models the compatibility means that either free-fermion or non-freefermion solutions can be used.

References

[1] Takhtajan L A and Faddeev L D 1979 Usp. Mat. Nauk 3413 (Engl. transl. 1979 Russian Math. Survey 34 11)
[2] Sklyanin E 1988 J. Phys. A: Math. Gen. 212375
[3] Mezincescu L and Nepomechie R I 1991 J. Phys. A: Math. Gen. 24 L17
[4] Friedel L and Maillet J M 1991 Phys. Lett. 262B 278
[5] Hlavaty L 1987 J. Phys. A: Math. Gen. 201661
[6] Hlavaty L 1985 Solution to the YBE corresponding to the $X X Z$ models in an external magnetic field Preprint E5-85-959, Dubna
[7] Cuerno R and Gonzâlez Ruiz A 1993 Free fermionic reflection matrices Preprint LPTHE-PAR 93/21, HEPTH/9304112
[8] Dasgupta N and Roy Chowdhury A 1993 J. Phys. A: Math. Gen. 265427
[9] de Vega H J and González Ruiz A 1992 Boundary matrices for the six vertex models Preprint LPTHE-PAR 92/45, HEP-TH/9211114

