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Generalized algebraic framework for open spin chains
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Prague 1, Czech Republic

Received 16 May 1994

Abstract. An extension of the Sklyanin algebraic framework for construction of a commuting
set of operators is presented. The conditions under which the operators can be interpreted
as integrals of motion of an open spin chain with boundary conditions and nearest-neighbour
interaction are investigated. An example based on the asymmetric six-vertex solutions of the
YBE equation is given.

1. Introduction

At the end of the seventies the quantum inverse scattering method was developed (for a
review see, for example, [1]). One of the systems where it was applied was periodic spin
chain with nearest-neighbour interaction. The algebra, from which the Hamiltonian of this
system as well as its integrals of motion were derived, is defined by the relations

Rya(uy ~ uz2) Ly () La(uz) = La(uz) Ly (1) Ria(uy — u2) (1
where R is a matrix function R : U — End(Vp @ V) satisfying the Yang—Baxter equation
(YBE)

Roal(uz — us)Ryz(uy — us)Ria(wy — u2) = Rip{uy — uz)Riz(uy — uz) Ras(ug — us). (2)

The range U of the *spectral parameters’ u is usually the field of complex or real numbers.

In 1988, Sklyanin proposed a method for constructing solvable models of quantum open
(i.e. non-periodic) spin chains [2]. The method is based on reflection-type algebras given
by the relations

Rip{uy — uz)My(ui) Rya(uy + u2) M2 (ua) = Ma(ua) Ri2(uy + wa) My (1) Ria(uy — ua)
Ria(tz — up) K (1) Ria(—uy — uz — 20) K3 (u2)

= K3 (ua)Riz(—ur — up — 2m) K (u1) R (g — w1).
In addition to the YBE, the matrix R was required to satisfy the conditions
PraRig(u) Pry = Ria(u)

R} (u) = R ()

Rip(u)Ria(—u) = p(u)ly

Ry )Ry (—u — 2n) = B
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where #;,1; mean the transposition in the first or second pair of indices of Rj2(u) =
{Ryi, jz(u)}ﬁ‘z}:?h ;=1 Under these conditions it was shown that there is a set of mutually
commuting elements that can be used for construction of the Hamiltonian for the open
spin chain system with the nearest-neighbour interaction and boundary terms. Some of the
conditions were later weakened [3] but they still remained rather restrictive. The purpose

of this paper is t0 present a more general construction of open spin chains.

2. The generalized construction

The starting point is the associative algebra generated by elements M,.j (u), K,.j (), i, j €
{1, ..., dy = dim V} satisfying quadratic relations

Apaluy, wa) My (1) Bia(ug, u2)Ma(ua) = Ma(u2)Cra(uy, ua)My(u)) Dia(uy, uz) 3
Ara(ur, u) K (1) Bra(u, uz) K (uz) = K2 (u2)Cra(er, ua) K7 (1) Dya(uy, ) (4)

where A, B, ..., D are matrix functions U x U — End(Vo x W), 1e. Ana(ur,u2) =
{A} (a1, uz)}?:f:.’:j?h =1 and similarly for B,C,...,D. Algebras of this type were
investigated in a different context in [4].

Qur first task is to identify the conditions for the numerical matrices A, B, ..., D that
guarantee the existence of a commuting subalgebra which, when represented, will provide
us with a commuting set of operators that eventually can be interpreted as the integrals of

motion of a quantum system,

Theorem 1. Let A is the associative algebra generated by elements M,.j (), X ," {(x), relations
(3), (4) and

My(u1)Ka(ug) = Ko(u2) M (1), (5)
If the matrices A, B, C, D, are related to A, B,C, D by

Anp(u, u) = 8(uy, ) (A5 (), u2)) ™! (6

BiaCur, ug) = B(ay, ) ((Bly(u, un)) ™ ) @

Cralir, u2) = &ur, uz)((Clyur, u2))™ )" ®)

Dua(uy, ua) = dluy, ua) (D (uy, u2)) ™! ©
where &, b, &, d are scalar functions satisfying

@y, u2)b(ur, uz) = &y, u2)d(uy, u2) (10)

then the elements ?(u) = K:.J' (u)M}(u) = [ K ()M (u}] form a commutative subalgebra
of A

[£Gun), t{u2)] = 0.
Remark. Note that there are no restrictions on A, B, C, D.

Proof. This repeats the steps of [2). Denoting K} = K1(1)), K2 = Ko(uz), My = Mi(1y),
My = Ma(ua), Ajp = Apaluy, un), ..., Do = Dya(uy, up) and using the properties of the
trace

CX'Y =Xy (X ¥7) = (X' ¥)
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and relations (3)8) we get
t(uer)t (uz) = try (K M) (Ko M) = - - = tr (K] Ko MY M)

= 2 (K} K2 BR Bl MY My} b = trp[ (KT Bia K2 )2 (M) BaM»)" ) /b
= tm2[(K7 BioK3Y'" Ay Ara(M1 BiaM2)1/(G6)

= trio[(A1aK7 Bia K3 (A1 M1 B1oM»))/(@b)

= trial (K3 C1oK ] Diz)(MaCra M) D12)121/ ()

= trpal (K3 Cra K Y (M2 CraM1)" 1€

= tria[ K2 K1 M3 M)

= tra[KE M2 K\ My Y = t(ua)t (1),

O

The fundamental property that enabled us to construct the operators describing integrals
of motion of periodic spin chains was the possibility of defining a coproduct in the algebra
(1). The commuting operators could then be expressed in the form

f(u) = [ Loy (@) Loy—1y(a2) - - - Laay(ue)]
where L;) were matrices of operators acting non-trivially only in the space of the jth spin,
Even though it is not possible (in the unbraided categories) to define a coproduct in the
algebra .4, we can use the algebra for the construction of spin chain operators due to the
following covariance property.

Theorem 2. Let B be the algebra generated by L(u) = L!(u), N(u) = N/(w), i,j €
{1,...,dp = dim Vp} and the relations

Ara(uy, u2) Ly(ur)La(ua) = La(ua) L1 (1) Ara(uy, u2) (1)
Dia(er, u2} N1 (a1 N2 (te2) = No(u) Ny (1) Dyofuy, uz) (12)
Ni(u1)Biz(ety, wa) La(uz) = La(u2) Bia (i, u2) N1 (uy) (13)
L) Crauy, ua)Na(uz) = No(ua)Cra(uer, u2) Li(uy). (14)
Then:
(i) the algebra B can be turned into bialgebra by the coproduct
AL{@)=LE@ S Li(W) AW/ ) = Nj (@) ® Nfw) (15)
and counit
eLiw) =8  eW/w)=4. (16)

(ii) The algebra M generated by the M,-j (1) and relations (3) is the B-comodule algebra.
The coaction on M is given by

B:M—>MeB  BM{ @) =M@ & LE@N () (17)
which, with 2 slight abuse of notation, can be written as S(M) = M = LMN.

Remark. A similar covariance algebra can be defined for the algebra X generated by
K (u).
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Proof The check of invariance of the relations (11)-(14) under (15),(16) is
straightforward. The invariance of (3) under (17) is proved by

ApMiBiMy = ALy Mi(N BioLy) MoN2 = (AjaLi L2)M) BiaNy Mo N,
= Ly L1 (A;p M) BlaMa) N1 Ny = Lo Ly MaCraMy (DN V2)
= LyMp(L1CraN2)M Ny Dz = (LaMaNa)Cra(Li M M) Dra
= M,C128 Dr2.
M

(As in the proof of theorem 1, we have omitted the explicit (%), #2) dependence in the
above formulae.)

The importance of theorem 2 lies in the fact that it presents the possibility of defining
a set of commuting operators composed from the operators acting non-trivially only in the
spaces V; of single spin states. Indeed, if p; are the representation of B on the spaces V;,
i=1,..., N, then

L) = ®m®- - ®px) o (AV (L))

N@):=(pm®pm®- - pon) o (AV ) (N(w)

are operators that represent the algebra Bon K =V, @ V2 ® .-+ @ Vy that is the Hilbert
space of the system of N spins. The operators L{u), N(u) can be written as

L) = Lon@) Liy-1y@) - - Lay(w) (18)

Nw) = Ny Ney@) - - Ronw) (19)
where

Lpyw=10-- 010 4Lw)® Il .- 91

Nip)=18 - 18 p(Nu) @18 - o 1.

The representations of B on V; such that dim V; =dim V3 ,i = 1,2, ..., N follow from
theorem 3.

Theorem 3. Let there be «, 8 € U such that the matrices A, B, C, D satisfy the equations
Ap(ur, u)An(un, @)An(uz, @) = Anlu, @)A(u, @A, ) (20)
Dia(uy, u2) D13 (uty, 8)Da3(uz, ) = Das(uz, 8)Dis(uy, 8)Diz(wr, uz)  (21)
Dy3(u1, 8) Bra(uy, u2)Azs(u2, @) = Azz(uz, @) Bra(uy, #2) D13 (w1, 8)  (22)

Apa(uy, @)Craluy, uz)} DUz, 8) = Das(uz, 8)Craluy, uz) Arzur, o) (23)

for all uy, us € U, (Note the vnusual order of indices in (22), (23).)
Then the multiplicative map p.; : B — End(Vy)

Loas (LN, = A" (u, ) 24)
[ous(NE DI = DY (u, 8) (25)

is a representation of the algebra B on a space V' such that dim V = dim V4.
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Proof. This is by direct check of relations (11)-{14) by means of (20)—(23).

Remark. Note that full Yang-Baxter-type equations are not required in the theorem. It is
sufficient if they are satisfied for single (@, 8) e U x U.

If we find a representation o of .4 on H, then due to theorems 1 and 2 we get the set
of commuting operators on H
f(u) o= Trlo (K @) Lo (M@)N )]

from which the Hamiitonians can be extracted. The simplest possibility is given by one-
dimensional representation of .A. Assuming that there are numerical matrices m(x), k(1) €
End(Vp) that satisfy relations (3), (4), we can choose

o(M]W) =ml@ly oK/ W) =k @y
Then
F(u) = k@ Lon@) ... Loy @m)Nay @) . . . Non ()] (26)

where the operator matrices Ly and N, act non-trivially only in the kth factor of the
space H=V @ Wp®R - @

The last goal we want to achieve is finding the Hamiltonian H of the open chain system
with nearest-neighbour interaction and boundary terms. For that we need the so-called
regularity conditions.

Theorem 4. Let there be a one-dimensional representation of the algebra .4 by the
numerical matrices m(u), k(u) and the representation of B on V; be p; = pys for all
ie{l,....NL

If there is ug € U such that

At @) = k Pz Di2(ug, 8) = APyy muo) = pll trfk(ug)] # 0 (27)

where «, A, ¢ are constants and P is the permutation matrix, then

F(uo) = p(reA)" trlk(uo) 1y (28)
and

dr di

ﬁ(uo) - (xA)”,u[H telk(uo)] +ﬁ'(a(uo)) nn] (29)

where the Hamiltonian H is a sum of operators acting non-trivially only on Vi, V; ® V44,
J=1 ..., N—1and Vy.

N-1
dm -

H =3 Hyet + 07 32 00) + 1 k)] trolkouodHvgl — (30)

n=1

_1dD L, A4y
Hynit = A7 25, 8) P + 7 Pt —2 2 (w0, ). (31)
Proof. From (18), (19) and (24)—(27) we get

L(w) = &" Poy Popt, ..., Py N(u) =AY Py P, ..., Pon (32)

from which (28) follows immediately. Similarly, (29)—(31) are obtained by differentiating
(26), using (32) and the following identity on End (Vo®N +Hy,

Pon+1Xon = Xn+1,n Pont1.
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We can see that the open spin chains with the nearest-neighbour interaction can be
constructed from rather general quadratic algebras defined by matrix functions A, B, C, D
of two variables that:

(i) satisfy the equations (20)-{23);

(i1} admit one-dimensignag rgprgsentation of A, ie. numerical matrices m(u), k() that
satisfy (3), (4), where A, B, C, D are given by (9), (10);

(iti) satisfy the regularity condition (27} for A, D and m(u), k(u).

3. Example: the X X Z model in 2 magnetic field

The above theory suggests the following procedure for construction of the open spin chain
models:
(i) Take two solutions A, D of the YBE (of the same dimension).
(it) Find the matrices B, C that satisfy (22), (23).
(iii) Solve equations (3), (4) for numerical matrices m{(u), k(u).
(iv) Check the regularity conditions.
(v) Evaluate the Hamiltonian (30), (31).
In this section we are going to apply this procedure to spaces with dim =2, i.e. spin—%
chains and asymmetric six-veriex matrices

AL O 0 0 D, 0 0 o

{0 4 as o {0 b b5 0
A=\ 4 4 4, 0 bwvy=1 9 p, D, o0 (33)

0 0 0 A 0 0 0 D,

where A; = A;(u,v) , Dy = Di(u,v), i=1,2,...,6

Inserting equation (33) into (22) we get a system of linear homogeneous equations for
the elements of the matrix B. Solving it by the standard method we find that if A; 7% Aa,
Az = Ag, Dy 5 D3, Dy # Dy, then there is a non-zero solution of (22) if and only if

A Dr Dp Ap

— = = — = 34
A1A;  DiDy DyDy  AzAy (34)
where 4, = A;(v, @) , D; = D;(u, 5) and
Ap = A\A4 + ArAs — AsAg 35
ﬁp =D 54 + .5253 - 55135. (36)
The solution is

B 0 0 0

1 6 B B O
B= 0 Bs B 0 G7)

O 0 0 B
By =A\Di —A3D; By= AyDy— AD, (38)
By = AsDy + (AsAg — A A3) D, [A, (39)
By = AyDy + (DsDg — D2D3)Az/ Dy (40)
Bs = 5555 Bg = AﬂsD_s. (41)

It is unique up to a scalar factor.
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Note that the conditions (34) imply that either both the matrices A and D are free-
fermionic, i.e. Ap =0, Dg =0, or non-free-fermionic, i.e. Ag #0, De# 0.

‘We shall deal with the latter case because for the free-fermionic solutions usually
tr[k(uo}] = 0 [7] and the formula (31) cannot be applied. Let A and D be non-symmetric

solutions of the YBE [5]

0 \

(0@
o) sin(fu—v+n) Sin(:_ ) 0
A v)= 0 W sin(i7) 0
0 sin(p}  e@)e®)sin(u—v) 0
\ 0 0 % sin(e—v-+n) }
(42)
where ¢ is an arbitrary function and D(u, v) is obtained from Ak, v} by ¢ — ¢,
The condition (34) reads
¢V ey =1 (43)
and inserting A, D into (37)-(41) we get
¢ (w)e(v) sin{w + ) 0 0 0
] 0 ;f’iz)) sin) ,p sinn) 0
@, v)= 0 p sin(n) ‘;((:)) sin(o) ( o+ | “4
sin(w + 1
0 0 —_
()¢’ ()

where w =u + v —~ o« — & and p = ¢’ (B)p(a).
It is easy to see that the solution of (23) can be derived from that of (22) by

transformation A < D, o <> § or alternatively by u <> v, 2 <> 1 so that
C(u,v) = PB(v, u)P 45)

up to a scalar factor.
The next step is solving the relations (3), (4) in terms of numerical matrices m{u), k().
If we are looking for the diagonal solution

() 0
”‘(“)*( 0 t(u))

then equation (3) yields (for a suitable normalization of the matrices A, B, C, D) only one
equation for y(u) = x(u)/t(n), namely

x()x(v) o
(e = @) st =)
()  x(@r@)y .
= - —a —8). 46
(v~ s e tvmad “9
It can be transformed to the well known functional equation
(Y(@)Y(w) — Dsin(e — v} = (Y({u) - Y(u))sinflu+v—o —8) 47
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by the transformation

‘i __px@ 48
V(s —/2+8/2) = BTN (48)
The diagonal solution of (3) is then
(u)sin(é- +u — /2 - 8/2 0
) = ( () () sin(é- + u — /2 — 8/2) | ) . )
0 psinféutoaf2+8/2)

The equation (4) can be obtained from (3) by ¢ — 1/g, ¢’ — 1/¢/, M(u) - K*{u)
and changing the arguments of sin by ¥ &> —u—n+a+48, v > —v—n+a+4. Applying
these transformations we find that

k) psin{éy —uto/2+8/2—1n) 0
W)=
0 p@)e' ) siny +u — /2 —8/2+ 1)
G0

(&~ and & in (49) and (50} are arbitrary constants).
The regularity conditions (27) are satisfied if

p=0=24
and the nearest-neighbour interaction Hamiltonian derived from (30), (31) is

N=1
H=Qsinp)™ Y _ {cosh8(ciof,, +0J0],,) +isinh6(a}o),, — 620,

n=1

N
+eosqaiai, }+h Y o} +of coté + o coté,
n=1
where
. dlogp(u)e’(u)

expd = p(ug)? = ¢’ (ug) ™2 h i

u=tiy
This Hamiltonian is an open version of the X XZ model in the homogeneous magnetic field
h and is an extension of the models presented ir [2, 3, 8].

The non-diagonal matrices m(u}, k(#) can be obtained only when @' (u)@{#) = constant.
In that case we obtain a Hamiltonian with the boundary terms proportional to ¢ and o7,
like in [9], but the external homogeneous magnetic field & vanishes.

4. Conclusions

The algebraic framework for the construction of integrable models can be extended to
quadratic algebras whose ‘structure coefficients’ are given by a pair of solutions A and D
of the spectral-dependant YBE.

No symmetries of the solutions are required but a certain compatibility between them
must be satisfied in order that the algebras may have convenient covariance properties.
In case of six-vertex models the compatibility means that either free-fermion or non-free-
fermion solutions can be used.
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